NACHİ

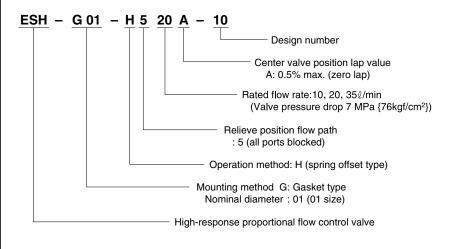
HIGH RESPONSE PROPORTIONAL FLOW AND DIRECTIONAL CONTROL VALVE

High-response proportional flow control valve ESH-G01

10 to 50 ℓ /min 32MPa

^{₳₿} ₩<u>ŦŦX<u></u>ŢŢŢŢŢŢ</u>

Features


- Frequency response equivalent to an electro-hydraulic servo valve.
- Direct spool by a high-output proportional solenoid.
- Differential transformer for accurate spool positioning with minor feedback.
- Recovery of all port block positions following amp power off or wiring disconnection (Failsafe Function).
- Steel spool and spring for long life.

Specifications

Model No.		ESH-G01- H510A-10	ESH-G01- H520A-10	ESH-G01- H540A-10
Maximum Operating Pressure P, A, B MPa{kgf/cm ² }		32{327}		
T Port Allowable Back Pressure MPa{kgf/cm ² }		2.5 {25.5} max.		
Rated Flow Rate ℓ /min (Valve pressure drop 7MPa{71kgf/cm²})		10	20	35
Maximum Flow Rate ℓ /min		22	35	50
Limit Valve Pressure Drop MPa{kgf/cm ² }		32{327}	21{214}	14{143}
Hysteresis %		0.5 max.		
Step Response ms (0→100% Displacement)		16 max. (Note 1)		
Frequency Response Hz (90° Phase Delay ±10% Displacement)		At least 80 (Note 1)		
Center	Supply Pressure	0.5% max/FS (∆p=25MPa{255kgf/cm²})		
Drift	Fluid Temperature	1.5% max/FS (<u>∆</u> t=40°C)		
Filtration		Class NAS9 max.		
Operating Fluid Temperature Range °C		0 to 60		
(Recommended Fluid Temperature Range $^\circ\text{C}$)		(30 to 60)		
Water and Dust Resistance		IP53		
Weight kg		2.3		
Note) 1 Step respon	se is typical value	or a supply pressure of 7MPa {71kgf/cm²} and		

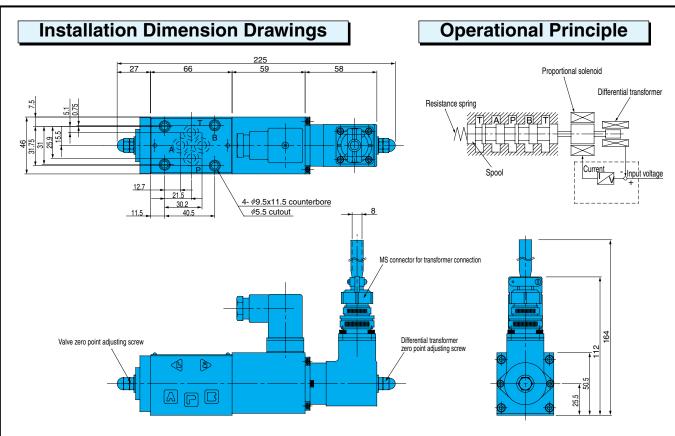
Note) 1.Step response is typical value for a supply pressure of 7MPa {71kgf/cm²} and fluid temperature of 40°C (kinematic viscosity: 40mm²/s).

Understanding Model Numbers

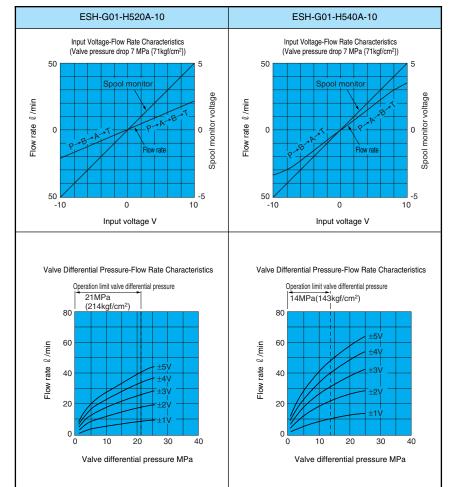
Handling

- 1 The amp and valve are adjusted to match at the factory, so be sure to use items that have the same MFG No.
- The differential transformer zero adjust screw and valve zero adjust screw are adjusted and fixed at the factory. Because of this, you should not touch the screws (sealed cap nuts).
- 3 Install the valve so the spool axis line is horizontal.
- [4] In the case of 3-port applications and for the direction that throughflow is most common, use of the following flow is recommended P→A→B→T. P→A limit differential pressure is greater than that of P→B.
- 5 Be sure to perform sufficient flushing before a test run.
- 6Use steel piping for this valve and the main actuator, and keep piping as short as possible.
- 7 There is no air bleeding.
- Image: Mineral oil hydraulic operating fluid is standard. Use an R&O type and wearresistant type of ISO VG32, 46, or 68 or equivalent.
- Use an operating fluid that conforms to the both of the following.
 Kinematic viscosity : 20 to 140mm²/s

Oil temperature : 30 to 60°C


10 Filtration

Maintain hydraulic operating fluid contamination so it is at least NAS Class 9.


- 11 Electrical wiring between the amp and valve should be no longer than 30 meters. For the solenoid valve use VCTF 2 mm² 2-conductor shielded wire, and for the differential transformer use VCTF 0.5 mm² 4-conductor shielded wire.
- 12 After disassembling the valve, be sure to fill the inside of the guide with operating fluid before reassembling.
- I3Bundled Accessories (Valve Mounting Bolts)

M5 x 45 ℓ , (four)

Tightening Torque : 5 to 7N \cdot m{51 to 71kgf \cdot cm}

The gasket mounting method conforms to ISO4401-AB-03-4-A.

Note) \pm 10V input amp factory default data. Rotating the GAIN trimmer clockwise (rightward) increases the flow rate by up to 10%.

Performance Curves

- Valve Pressure Drop and Rated Flow Rate
 - Valve Pressure $Drop(\Delta P_x)$ =P_S-P_L-P_T

Ps: Valve supply pressure

P_L : Load pressure

 P_T : T Port back pressure The rated flow rate is the value when the above valve pressure drop is 7MPa {71kgf/cm²}.

• Valve Pressure Drop and Control Flow Rate

The following is the maximum control flow rate when the size of the obtained valve pressure drop is ΔP_{x} ,

$$Q_x = Q_{rate} \times \sqrt{\frac{\Delta P_x}{7}}$$

 $\label{eq:Qrate} \begin{array}{l} \mbox{Qrate}: \mbox{Rated flow rate} \\ \Delta P_x = P_s \text{-} P_L \text{-} P_{\text{T}} \end{array}$

• Calculation example When ESH-G01-H520A-10 is used under the following conditions: $P_s=10MPa\{102kgf/cm^2\}$ $P_L=6MPa\{61kgf/cm^2\}$ $P_T=1MPa\{10kgf/cm^2\}$ Maximum control flow rate Qx is as shown below:

$$Q_x = Q_{rate} \times \sqrt{\frac{P_s - P_L - P_T}{7}}$$
$$= 20 \times \sqrt{\frac{10 - 6 - 1}{7}} = 13 \ell / \min$$